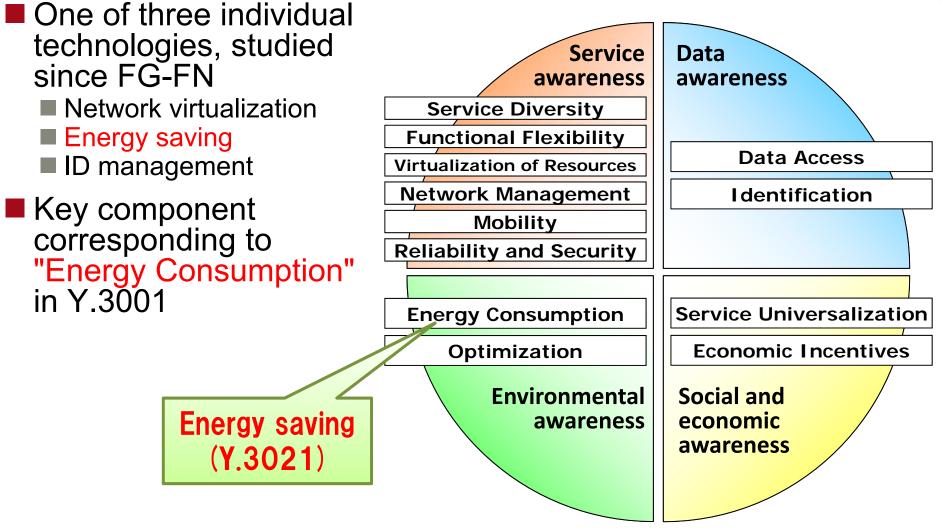
Global Future Internet Week 2011

Framework of energy saving for Future Networks


- ITU-T Recommendation Y.3021 -

Toshihiko Kurita Fujitsu Ltd. Dec. 5, 2011

Copyright Fujitsu Ltd. 2011

Position of energy saving in FN

4 Objectives and 12 Design Goals in FN (Y.3001)

Scope

FUĴĨTSU

Scope of Y.3021

- Describe the necessity for energy saving
- Review potential technologies
- Identify multiple viewpoints to be considered
- Identify major functions and their cyclic interactions
- Analyze possible impacts by introducing the technologies
- Itemize high-level requirements

Reference: TD-241(PLEN/13) Newly consented in SG13 Oct. Meeting

Background

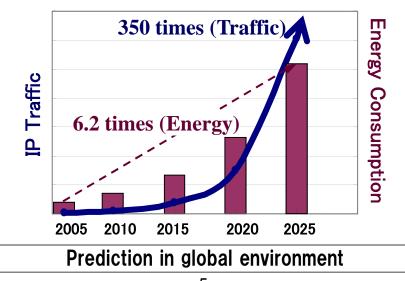
Definition of "Energy-saving of Networks"

Network capabilities and their operations where the total energy for network equipment is systematically used in an efficient manner and, as a consequence, the energy consumption is reduced compared with networks without those capabilities and operations.

Why needed ?

- Reasoning
 - Individual benefits: reduction of energy costs and heat
 - Social perspective: reduction of environmental impact, e.g., GHG emission

Two aspects from network


- Green by Future Networks \rightarrow Energy saving of non-ICTs using FNs
- Green of Future Networks \rightarrow Energy saving of FNs themselves

Y.3021 focuses on "Green of Future Networks"

Prediction of network energy consumption Fujirsu

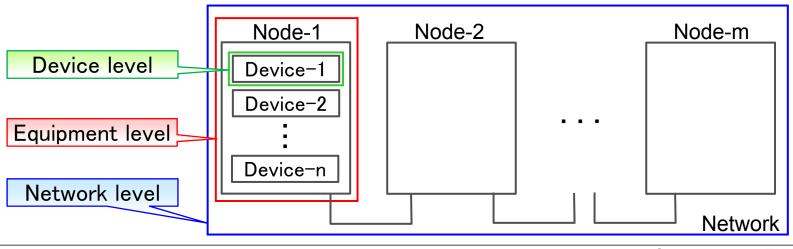
- In global environment, IP traffic is estimated to increase by 34% every year
 - \rightarrow IP traffic of 2025 will be 350 times that of 2005
- Accordingly, network energy consumption in 2025 is predicted to be 6.2 times the 2005 level
 - \rightarrow The share among all industries' energy consumption will also increase

Energy saving of networks is becoming more important

Technology levels to be considered

FUĴĨTSU

Device level


Technologies which are applied to electronics devices such as LSI and memory

Equipment level

Technologies which are applied to one piece of equipment (a set of devices) such as a router or switch, etc.

Network level

Technologies which are applied to equipment within the whole network (e.g., routing protocol applied to multiple routers)

List of technologies

FUÏTSU

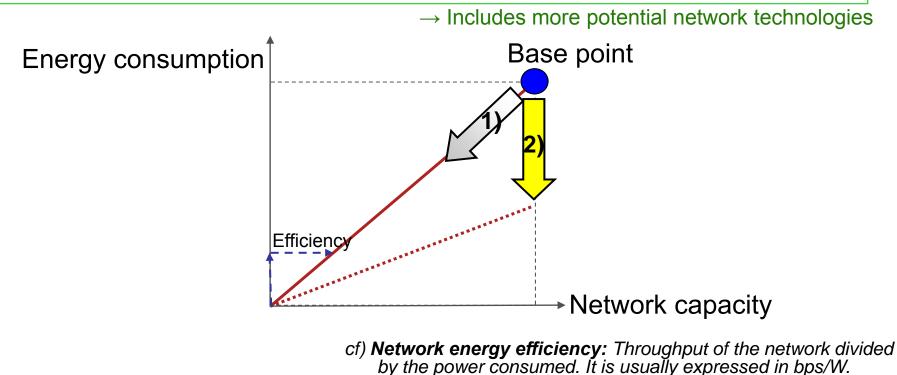
- Device-level technology
 - LSI micro fabrication, Multi-core CPU, Clock gating, Poweraware virtual memory, Advanced Power Amplifier (PA)
- Equipment-level technology
 - Optical network node, Sleep mode control, ALR/DVS, Thermal design, Cache server, Filtering, Sorry server, Shaping, Compact base transceiver stations (BTSs), Smart Antenna Technologies, Relay station
- Network-level technology
 - Circuit/burst switching, Energy Consumption-based routing/traffic engineering, Lightweight protocol, Transmission scheduling, CDN, Traffic peak shifting, Smallcell design, Energy Consumption-aware network planning

Rivew these technologies \rightarrow Identify essential approaches and functions

Target area of this Recommendation

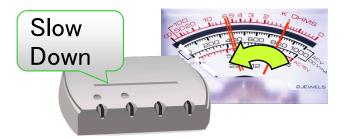
- "Green of FN" or "Green by FN"
 - \rightarrow "Green of FN"
- Stages in a lifecycle
 - \rightarrow The use stage, which includes pre-operation and operation phases
- Levels of technologies
 - \rightarrow Three levels of technologies (device-, equipment-, and network level)
- Type of methods for energy saving
 - \rightarrow Technical methods

FUÏITSU


Approaches for energy saving

- 1) Reduction of required network capacity
 - 1-1) Reduce the volume of traffic as a whole network
 - 1-2) Shift the traffic at peak time, which reduces the maximum capacity
- 2) Improvement of efficiency

2-1) Control device/equipment operation according to traffic dynamics


2-2) Forward traffic with less power

Control operation to traffic dynamics

Example

Sleep mode control

Dynamic Voltage Scaling (DVS)


- Method
 - Putting a device to "sleep mode" when it is not in use
 - Reducing the traffic-forwarding capacity of a device when traffic volume is low
 - ⇔ Current devices are always on, and always at full capacity

FUĴITSU

Forward traffic with less power

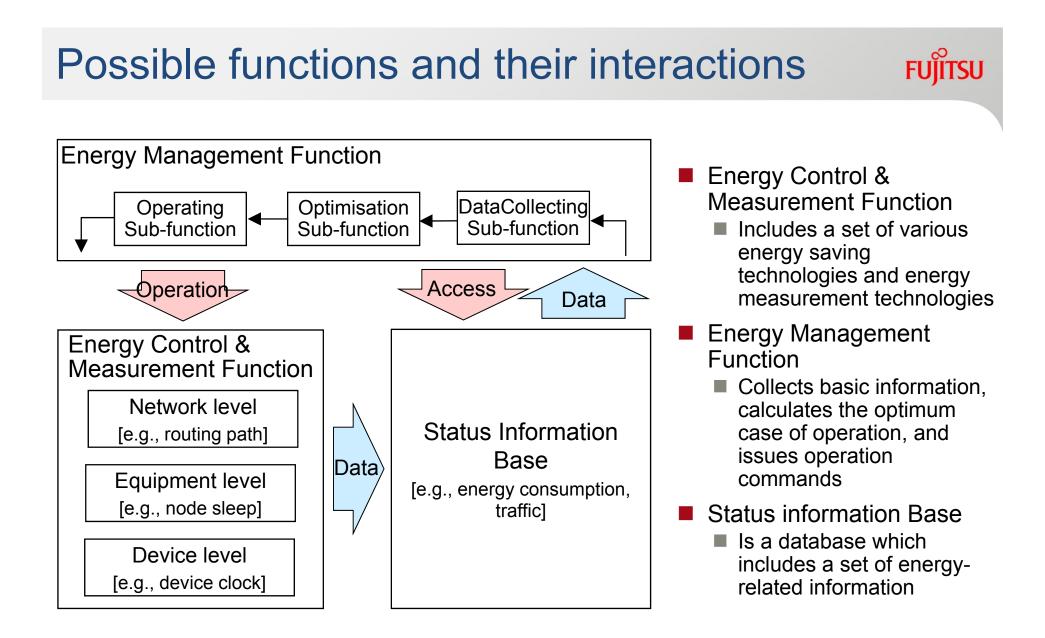
FUĴĨTSU

Example

LSI micro fabrication

Optical network node

Method

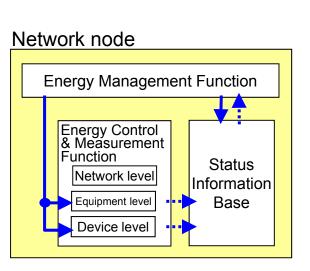

Reduce the necessary power for the given throughput

Not only device-level technologies, but also equipment- and networklevel technologies are important

Classification of technologies

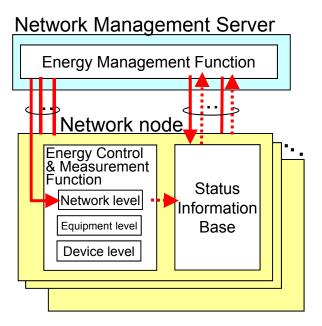
Approach	1) Reduction of capacity		2) Improvement of efficiency	
Tech. level	1-1) Reduce traffic	1-2) Peak-shift	2-1) Dynamic ctl.	2-2) Less power
Device			 Multi-core CPU Clock gating Power aware virtual memory 	 LSI fabrication Advanced Power Amplifier
Equipment	- Cache server - Filtering	- Sorry server - Shaping	 Sleep mode control ALR/DVS 	 Optical node Thermal design Compact BTSs Smart Antenna Technologies Relay station
Network	- CDN	- Traffic peak shifting	 Routing/traffic engineering Energy-aware network planning (dynamic) 	 Circuit/burst switching Light protocol Txt. scheduling Small-cell design Energy-aware network planning (static)

Energy Management Function

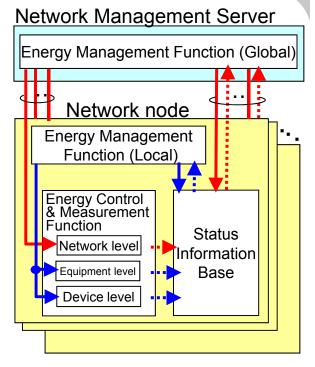


Includes three sub-functions:

- DataCollecting Sub-function: Collects the necessary status information about network nodes from the Status Information Base
- Optimisation Sub-function: Decides which management operation should be performed on which network node to minimise total power consumption
- Operating Sub-function: Sends an operation request to the Energy Control & Measurement Function of a network node


Combination models of functions

FUĴĨTSU


(A) Local loop model

e.g., to control device clock according to the traffic

(B) Global loop model

e.g., the routing which assigns least power consumption route

(C) Combined loop model

e.g., energy-based routing, where global loop aggregates the traffic routes, and local loop puts the node to sleep in case of no traffic

Impact analysis of energy-saving

Influence on network performance

- Issue: Introducing energy saving technologies may change network performance such as the QoS, and may also influence security
- Requirement: energy saving technologies should be applied so that the degradation of network performance, which is caused by the introduction of energy saving technologies, would fall within the acceptable range for specific services

Influence on service provisioning

- Issue: Provisioning of a certain new service, which usually requires extra capabilities and resources, could result in increased energy consumption
- Requirement: on service provisioning, Energy saving technologies should be applied so that the increased consumption, which is caused by multiple simultaneous service provisioning, would fall within the acceptable range in order that individual service requirements are maintained (e.g., delay, loss, etc.)

High level requirements (1/3)

Approaches

- Reducing the volume of traffic to be forwarded by device or equipment
- Shifting the traffic at peak time, which reduces the maximum capability
- Controlling device/equipment operation according to traffic fluctuations
- Forwarding traffic with less power by transmitting data on simplified mechanism

High level requirements (2/3)

Functions

- Supporting Energy Control & Measurement Function, Energy Management Function, and Status Information Base
- Energy Control & Measurement Function performing control actions to reduce the energy consumption, and performing measurement of energy consumption
- Energy Management Function collecting basic information, calculating optimum case of operation, and issuing operation commands
- Status Information Base gathering basic information of the current mode

High level requirements (3/3)

Influence to network performance

- On introducing energy saving technologies, they are applied so that the degradation of network performance would fall within the acceptable range for the service
- On service provisioning, energy saving technologies are applied so that the increased consumption would fall within the acceptable range in order that individual service requirements are maintained

Current status and next steps

- Y.3021 has been newly consented in SG13 Oct. Meeting
- As the contents are high-level descriptions, more considerations and detailed documents are required in next step
 - Energy measurement, Sleep control, Energy-based routing, etc.
- Cooperation with other SDOs may be necessary
 - ITU-T SG5, ISO/IEC JTC1, IETF, etc.

Related trends

- ITU-T FG-Smart Grid
 - Studies energy saving in home network, and is working on baseline documents

ISO/IEC JTC1 SG-Green by ICT

Was established in last Nov., and studies standardization on energy saving by using ICT

IEEE - Energy Efficient Ethernet (802.3az)

Is a standard of energy saving in the Ethernet, which uses sleep mode control, etc.

IETF eman(Energy Management)-WG

Studies standardization on energy saving from network management perspective, which includes monitoring and controlling of network equipment

GreenTouch Consortium

Is international consortium to study technologies on energy saving of networks, in which Alcatel-Lucent etc. have participated

FUJTSU

shaping tomorrow with you